Convex risk

The Cost of Goods Sold

Stephen Mildenhall John Major CARe Meeting, June 9, 2021

Licensed by John Major and Stephen J Mildenhall under Creative Commons Attribution 4.0 International

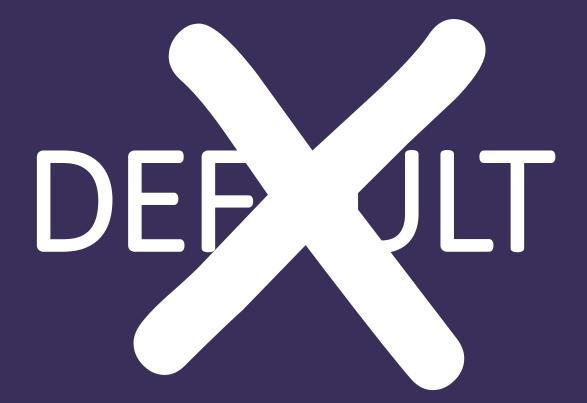
The opinions expressed in this presentation are not necessarily those of the presenters.

Live Poll

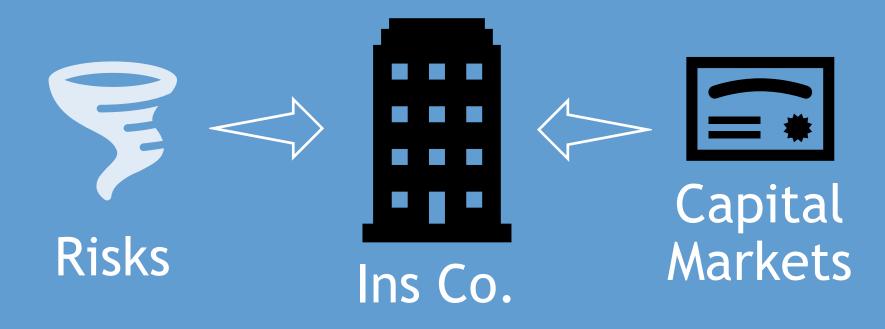
Which best describes your employer?

Answers

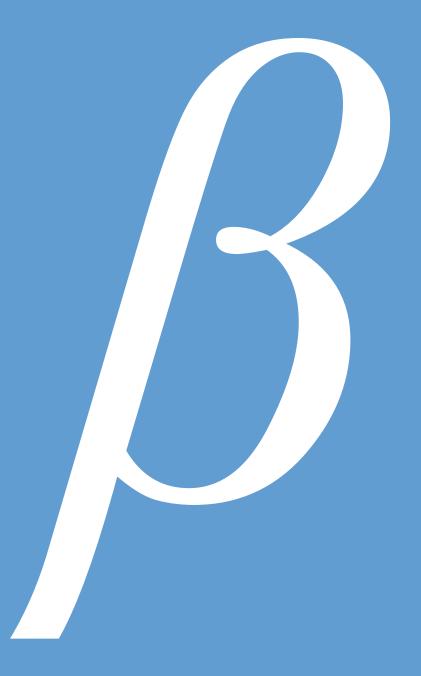
- Insurer
- Reinsurer
- Broker
- Consultant
- Regulator, rating agency, other


Live Poll Answers

Ten Reasons to Love Distortions


${risk} \times {capital structure} \rightarrow price$

Licensed by John Major and Stephen J Mildenhall under Creative Commons Attribution 4.0 International



Classical All-Equity Pricing

P = EL + r(a - P)

Licensed by John Major and Stephen J Mildenhall under Creative Commons Attribution 4.0 International

Risk vs. ambiguity/uncertainty

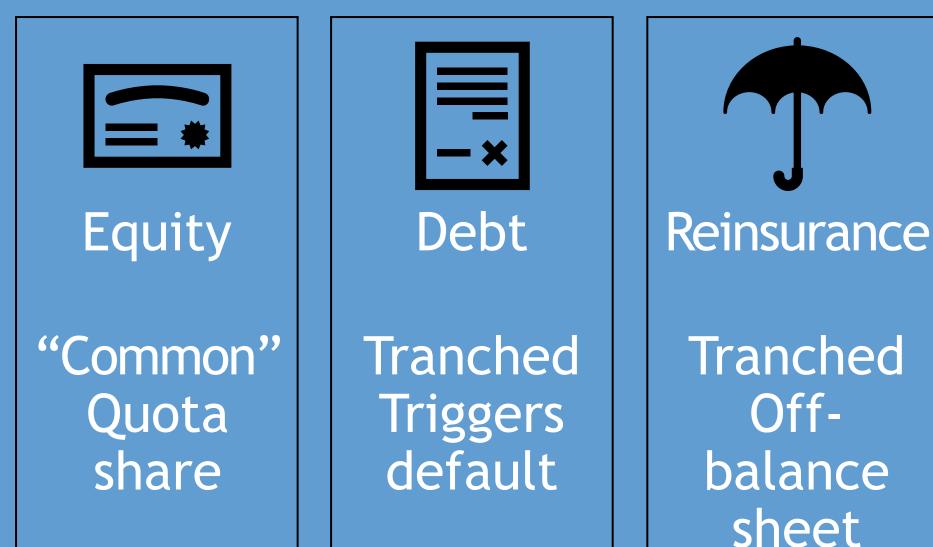
Risk vs. ambiguity/uncertainty

3

Why Equity is Expensive

Principal-Agent Problems

Not Expertizable Regulation, Rating Agencies

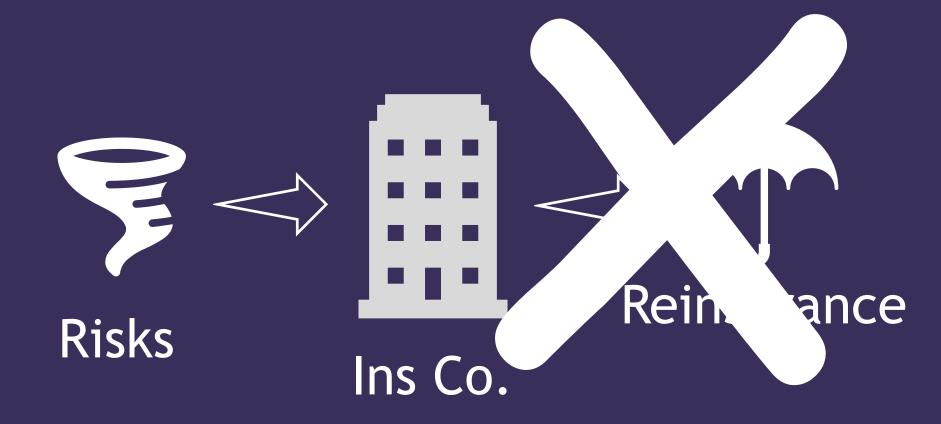

Left-Skewed Double Taxation

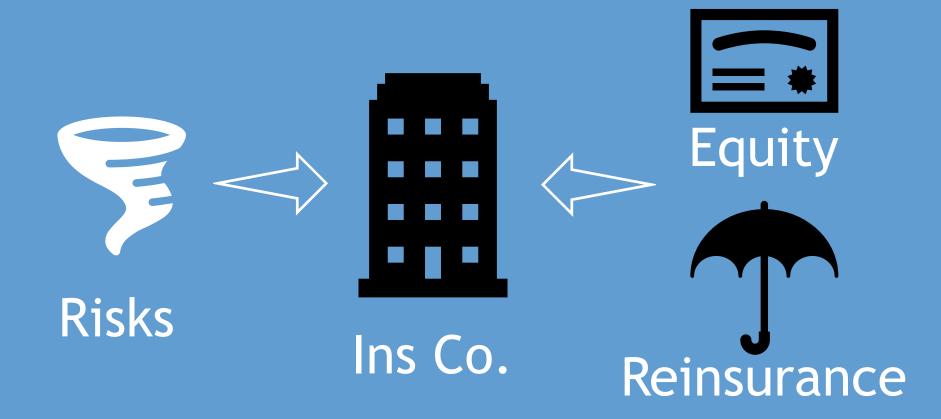
Capital vs. Equity

Capital = assets net of policyholder liabilities

Equity = owner's residual value

Three Types of Capital


All-equity balance sheet pricing


All-equity balance sheet pricing

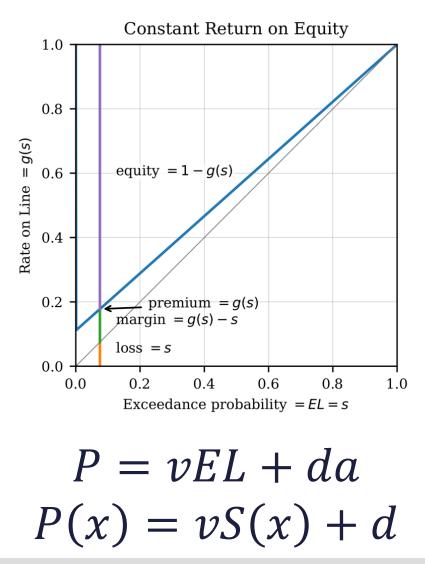
Reinsurance = Outwards Business

Reinsurance = Inwards Capital

Cat Bond Capital Can Be Cheaper

Licensed by John Major and Stephen J Mildenhall under Creative Commons Attribution 4.0 International

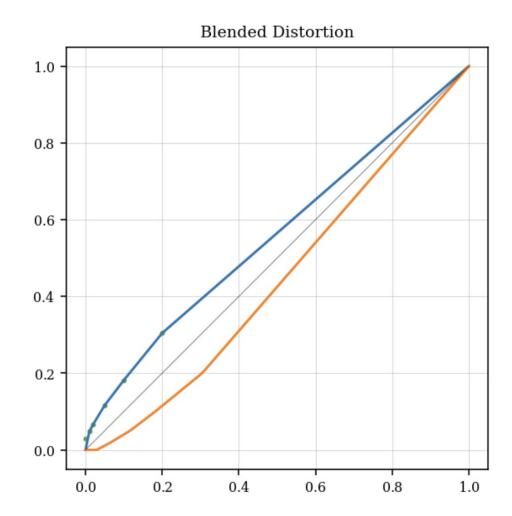
Live Poll


Which best describes your familiarity with distortion (or spectral) risk measures, such as the proportional hazards transform or the Wang transform?

- No familiarity
- Aware, but have never used
- Experimented, but do not use in "production"
- Implemented in day-to-day production pricing tools
- What? There are other ways to price?

Live Poll Answers

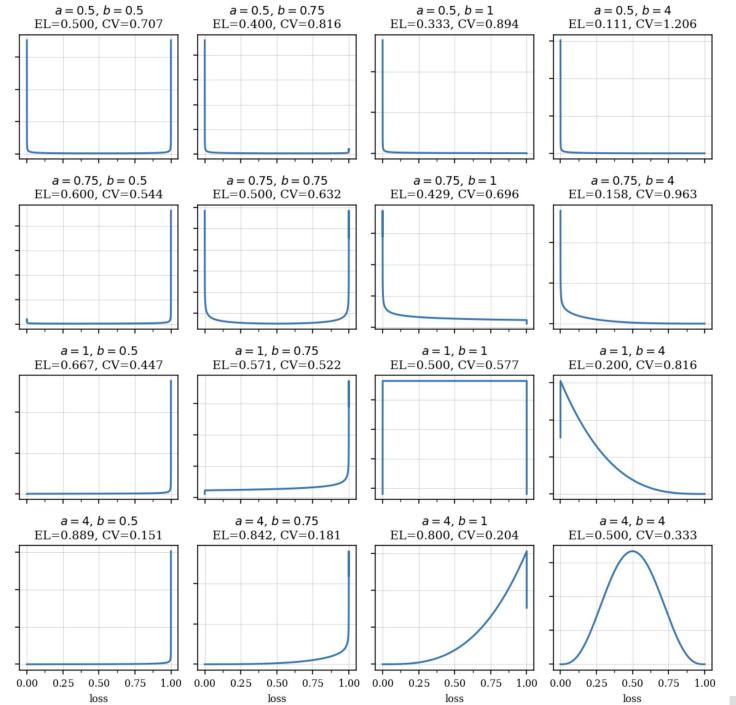
Fund Risk-Bearing Assets by Layer


How to Calibrate Distortion g

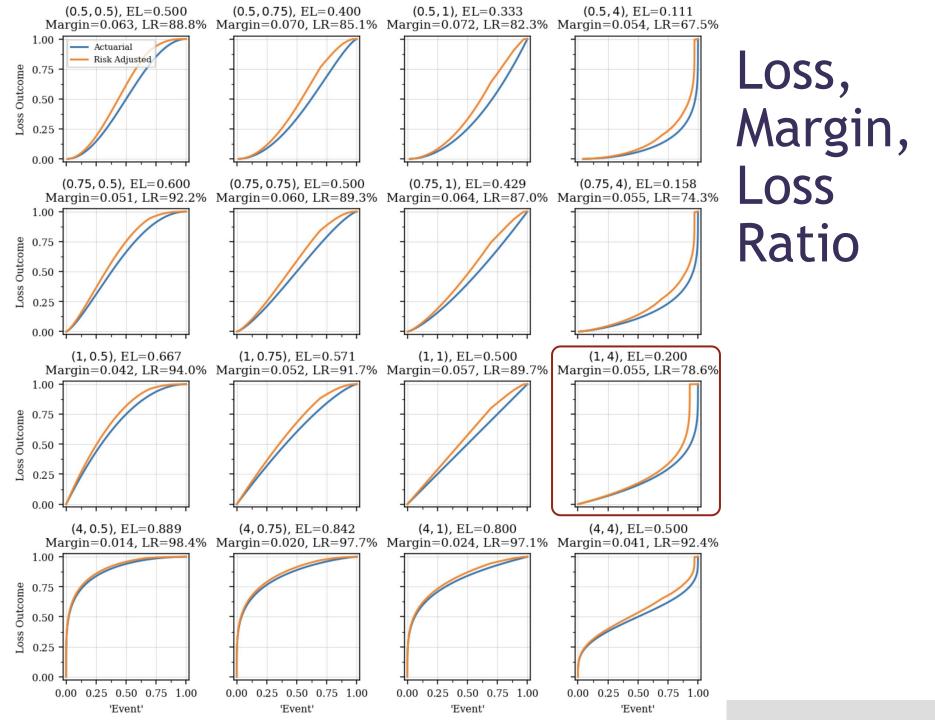
$\{risk\} \times \{capital structure\} \rightarrow price$

Equity + Reinsurance Distortion

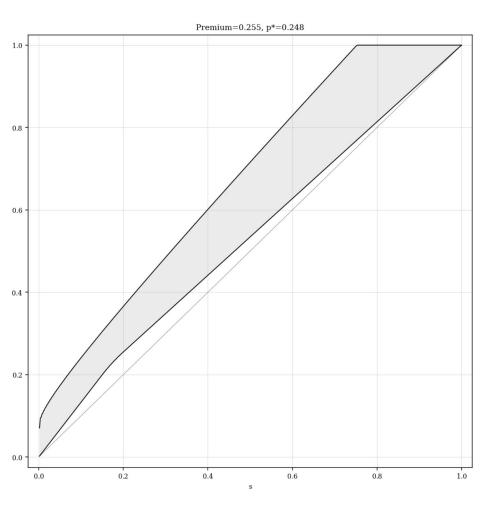
	ROE	g(s)
S		
1e-10	0.03	0.0291
0.01	0.04	0.0481
0.02	0.05	0.0667
0.05	0.075	0.116
0.1	0.1	0.182
0.2	0.15	0.304


Portfolio Pricing

• $EL = E[X] = \int S(x) dx = \int xf(x) dx$


• $P = E[Xg'S(X)] = \int gS(x) dx = \int xg'S(x)f(x) dx$

• g'S(X) is a risk adjustment, co-measure


No default!

Beta Loss Densities

How to Calibrate Distortion g

Distortions replicating base pricing on (1,4)-beta distribution, 78.6% loss ratio

There is a unique lowest cost capital structure

Allocation When $X = \sum X_i$

• $EL_i = E[X_i] = \int x_i f(x) dx$

•
$$P_i = E[X_i g' S(X)] = \int x_i g' S(x) f(x) dx$$

Call P_i the natural allocation

Terms and conditions apply

Allocation in Practice

Spreadsheet or SQL or R or Python or ...

- Rows = simulations
- Columns = loss by line and in total

Group-by & sort total loss and average

• Compute S(x) and gS(x), difference

Sum-product

Ambiguity

Ambiguity is not Bayes-able

Tossing an uncertain coin

 Adverse selection
 → Wrong until the end of time Ambiguity and Distortions

Pr(H) > 0.5 and Pr(T) > 0.5

Non-additive probabilities: g(Pr(A))

• Example: for $g(s) = x^{1/2}$ $g(\Pr(H)) = 0.71 = g(\Pr(T))$ $g(\Pr(H,T)) = 1$

Underwriters and Distortions

 Distortion pricing = worst of a set of scenario outcomes

The distortion controls how much event probabilities can increase

Live Poll

A legitimate pricing rule that is consistent with finance theory must have which of the following properties?

- 1. It only charges for non-diversifiable risk
- 2. It is linear: the price of a bundle is the sum of the prices of the parts
- 3. It does not allow arbitrage opportunities

Answers

- 1 only
- 2 only
- 3 only
- 1, 2, and 3
- Don't understand the question

Live Poll Answers

Finance Theory and Distortions

Bid-ask spread = market imperfection

 Decreases the effectiveness of noarbitrage

 Distortion pricing is consistent with financial theory

Optimization and Distortions

Optimization = marginal improvements

 Natural allocation has a marginal interpretation

$$\lim_{t \downarrow 0} \frac{\rho(X + tX_i) - \rho(X)}{t} = E[X_i g' S(X)]$$

Top Ten Reasons To Love Distortions

- 1. Calibrate to capital structure
- 2. Can calibrate to market pricing
- 3. Practical spreadsheet implementation
- 4. Easy to work with catastrophe model output
- 5. Sensitive to shape of risk
- 6. Marginal risk interpretation
- 7. Weighted average of TVaR interpretation
- 8. Worst-over-scenarios interpretation
- 9. Consistent with underwriting

10. Consistent with financial theory

Part II: Reinsurance Applications

SRM Use Cases

Policy pricing / technical premium

LOB assessment

LOB capital cost allocation

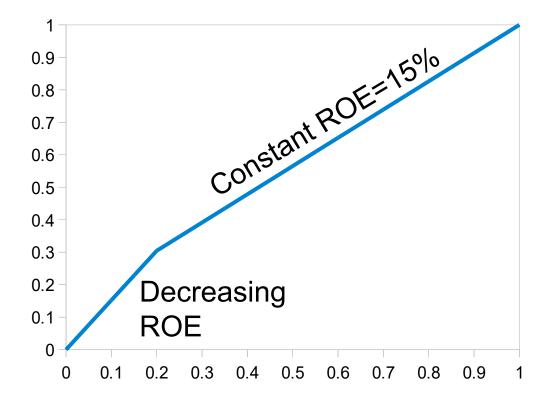
Reinsurance decisions

SRM Principal Modes

- "A/B": Evaluate $\rho(X_G)$ and $\rho(X_N)$; compare
- Allocate: NA(X_C ; X_G) where $X_C = X_G X_N$

Applying the Modes

Use Case	A/B	Alloc
Policy pricing / technical premium	No	Yes
LOB assessment	??	Yes
LOB capital cost allocation	No	Yes
Reinsurance decisions	Yes	Yes


Case Study

- Use reinsurance to minimize total cost of risk
- VERY simple portfolio: 2 lines
- VERY simple XOL contract: on line 1
- Illustrate the two modes

Reinsurance Example

Gross				Net 2 xs 2 (X1), premium = 0.38			
X1	X2	X _G	р	X1 _c	X1 _N	X2	X _N
1	1	2	0.7	0	1	1	2
2	3	5	0.1	0	2	3	5
4	2	6	0.1	2	2	2	4
3	4	7	0.1	1	2	4	6

Our Distortion Function

First Mode: A/B

- A/B the gross and net positions
- Which one has lower total cost?

Gross Valuation

X _G	X _N	р	S	g(S)	dg _G
2	2	0.7	0.3	0.391	0.609
5	5	0.1	0.2	0.304	0.087
6	4	0.1	0.1	0.152	0.152
7	6	0.1	0	0	0.152

 $\Sigma X_{Gi} dg_i = 3.630$ = gross premium

Net Valuation

	X _G	X _N	р	S	g(S)	dg _N
	2	2	0.7	0.3	0.391	0.609
Re-	6	4	0.1	0.2	0.304	0.087
order!	5	5	0.1	0.1	0.152	0.152
	7	6	0.1	0	0	0.152

 $\Sigma X_{Ni} dg_i = 3.239$ = net premium

A/B Gross and Net

- 3.239 Net premium
- +0.380 Cost of reinsurance
- =3.619 Total cost, net position

VS

- 3.630 Gross premium + 0 r/i cost
- 0.011 Difference

Conclusion: r/i a marginally good deal.

Second Mode: Allocation

- Allocate premium from Gross to Net and Ceded components
- Allocate premium from Net to Gross and (-)Ceded components
- Is Ceded worth the r/i premium?

Allocating Ceded from Gross Position

$X_G = X_N + X1_C$							
X1	X2	X_G	dg _G	X1 _c			
1	1	2	0.609	0			
2	3	5	0.087	0			
4	2	6	0.152	2			
3	4	7	0.152	1			
		_					

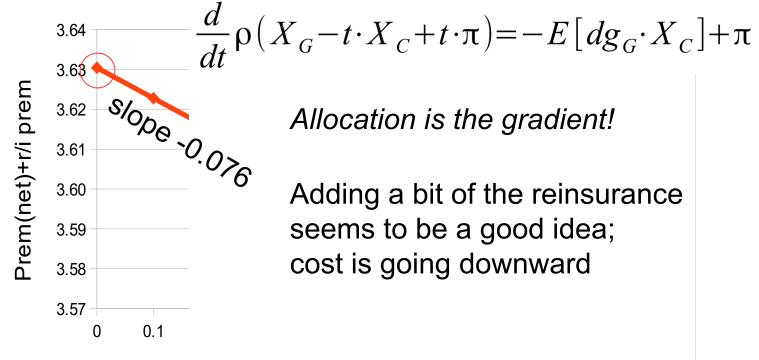
 $\Sigma X1c_i dg_i = 0.456 > 0.38$ by 0.076

Allocating Ceded from <u>Net</u> Position

		X _N =	: X _G - >	۲ _۲		
	X1 _N	X2	X _N	dg _N	X1 _c	
	1	1	2	0.609	0	
Re-	2	2	4	0.087	2	٦
order!	2	3	5	0.152	0	
	2	4	6	0.152	1	

 $\Sigma X1c_i dg_i = 0.326 < 0.38$ by 0.054

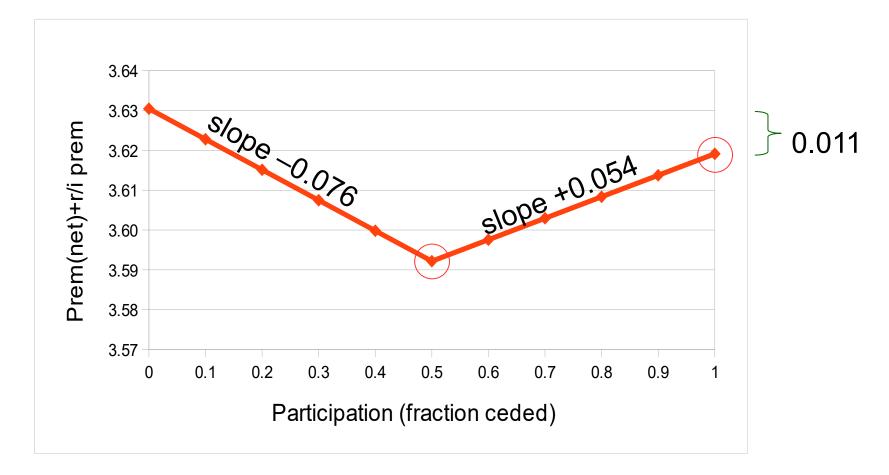
Conclusions about the r/i deal so far


- Direct A/B:
 - Eh, okay. +0.011
- Allocate starting at gross
 Great! +0.076
- Allocate starting at net
 - Bad! -0.054
- How do I explain this to my boss?
 - What does it all really mean?

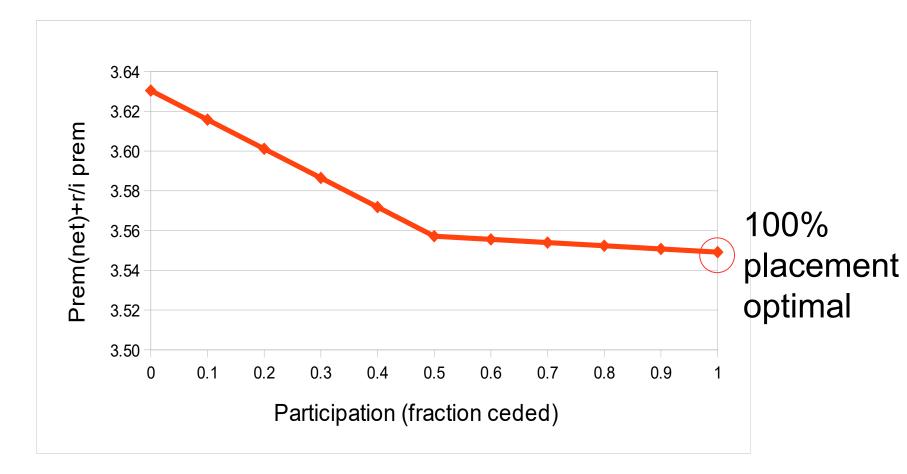
A More Thorough A/B

- Fractional participation t
- $X_N(t) = X_G t \cdot X_C$
- Minimize total cost = $\rho(X_N(t)) + t \cdot (r/i \text{ prem})$

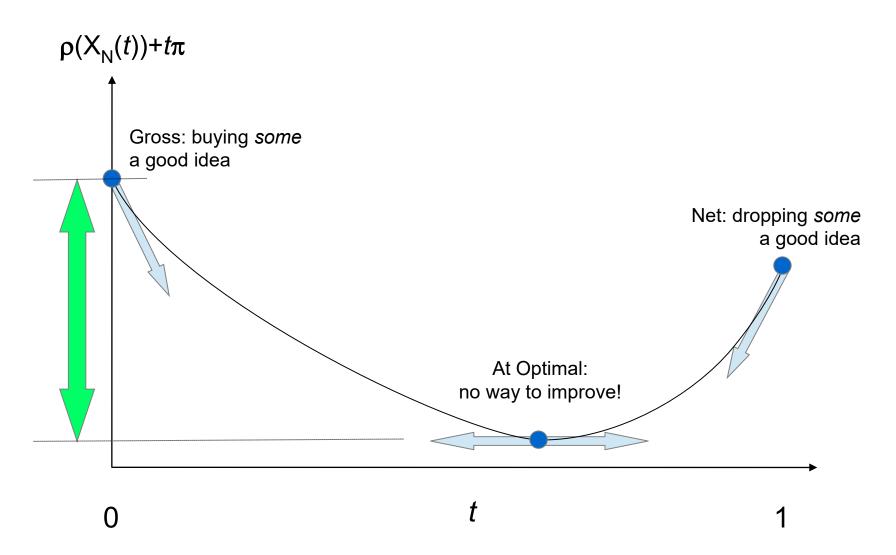
Starting at Gross

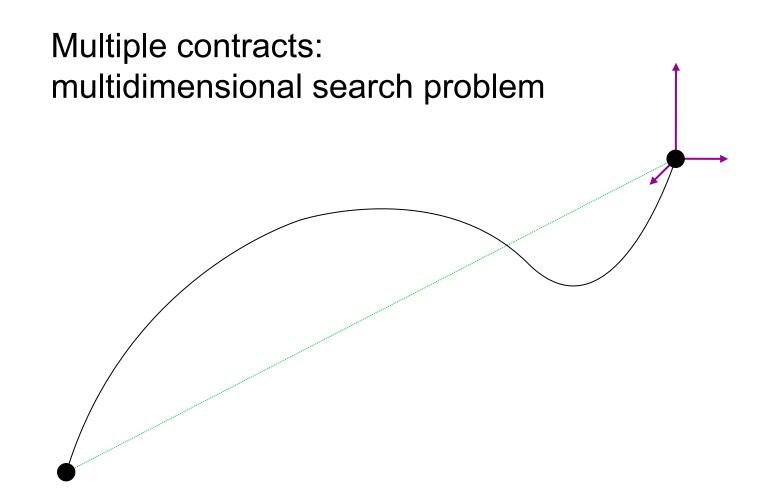


Participation (fraction ceded)


Starting at Net

F	3.64 3.63	$\frac{d}{dt}\rho(X_N + (1-t)\cdot X_C + t\cdot\pi) = -E[dg_N\cdot X_C] + \pi$
orer	3.62	
+r/i μ	3.61	Subtracting a bit of the
let)+	3.60	Subtracting a bit of the reinsurance seems to $s^{0.054}$ be a good idea; cost $s^{0.054}$
^{>} rem(net)+r/i prem	3.59	
Pre	3.58	would go down.
	3.57).9 1
		Participation (fraction ceded)


The Full Story


If Premium Were 0.31

More generally, curved

Advanced Application

Summary: Allocation for Decisions

- Allocation = gradient
- Faster than A/B
- Like using Taylor's Theorem
 - OK for small changes
 - Iffy for big

Applying the Modes, Redux

Use Case	A/B	Alloc
Policy pricing / technical premium	No	Yes
LOB assessment	??	Yes
LOB capital cost allocation	No	Yes
Reinsurance decisions	Yes	Yes

Questions?